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Opening of a gap in an inhomogeneous external field
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Abstract. We study the one-dimensional spin-1/2 antiferromagnetic Heisenberg model exposed to an ex-
ternal field, which is a superposition of a homogeneous field h3 and a small periodic field of strength h1.
For the case of a transverse staggered field a gap opens, which scales with hε11 , where ε1 = ε1(h3) is given
by the critical exponent η1(M(h3)) defined through the transverse structure factor of the model at h1 = 0.
For the case of a longitudinal periodic field with wave vector q = π/2 and strength hq a plateau is found
in the magnetization curve at M = 1/4. The difference of the upper- and lower magnetic field scales
with hu3 − h

l
3 ∼ hε3q , where ε3 = ε3(h3) is given by the critical exponent η3(M(h3)) defined through the

longitudinal structure factor of the model at hq = 0.

PACS. 75.10 -b General theory and models of magnetic ordering

1 Introduction

The properties of the one-dimensional (1D) spin-1/2 an-
tiferromagnetic Heisenberg model (AFH) with nearest
neighbour coupling:

H(h3) ≡ H0 − 2h3S3(0), (1)

H0 ≡ 2
N∑
l=1

Sl · Sl+1, (2)

Sa(q) ≡
N∑
l=1

eilqSal , a = 1, 2, 3, (3)

in the presence of a homogeneous external field of strength
h3 are well-known.

1. There is no gap. The magnetization curve M = M(h3)
is a monotonically increasing convex function [1–3] for
h3 ≥ 0; in particular there is no plateau.

2. In the presence of the field h3 the ground state |ps, S〉
of H(h3) has total spin S = S3

T = NM(h3) and mo-
mentum ps = 0, π – depending on S and N .

3. The low energy excitations which can be reached from
the ground state |ps, S〉 by means of the transition op-
erators S3(q) and S±(q):

ω3(q, h3) = E(ps + q, S)−E(ps, S), (4)

ω±(q, h3) = E(ps + q, S ± 1)−E(ps, S)± h3, (5)

vanish at the soft mode momenta qa = qa(M):

Ω̂a(M) ≡ lim
N→∞

Nωa(qa(M), h3), (6)
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with

qa(M) = π

{
1: a = 1, 2

1− 2M : a = 3
. (7)

Conformal field theory describes the critical behaviour
at the soft modes [4–8]. In particular the field depen-
dence of the η-exponents:

ηa(M) =
Ω̂a(M)

πv(M)
(8)

has been computed by means of the Bethe ansatz so-
lutions for the energy differences and the spin wave
velocity [9,10]

v(M)=
1

2π
lim
N→∞

N [E(ps+2π/N, S)−E(ps, S)]. (9)

4. The η-exponents govern the finite-size behaviour of the
transition amplitudes:

〈S ± 1, ps + π|S±(π)|S, ps〉
N→∞
−→ Nκ1(h3) (10)

〈S, ps+q3|S3(q3)|S, ps〉
N→∞
−→ Nκ3(h3) (11)

with

κa(h3) = 1−
ηa(M(h3))

2
, (12)

and of the static structure factors:

〈S, ps|Sa(qa)Sa(qa)†|S, ps〉
N→∞
−→ N2−ηa(M). (13)

At the soft mode momenta qa = qa(M) the dynamical
structure factors develop infrared singularities of the
type ω−2κa(h3).
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First evidence for the existence of low energy modes in
the excitation spectrum has been found recently in neu-
tron scattering experiments on copper benzoat [11,12], ex-
posed to a homogeneous magnetic field h3. An exponential
fit to the temperature dependence of the specific heat data
revealed, however, that there is a gap in the energy dif-
ferences (4, 5, 7), which opens with the field strength h3

as hε3, ε = 2/3. This means of course, that the compound
copper benzoat can not be described by a 1D Heisenberg
antiferromagnet. Oshikawa and Affleck [13] argued that
the local g-tensor for the Cu ions generates an effective
staggered field of strength (h1 � h3), perpendicular to
the uniform field h3. Therefore, one is lead to investigate
the Hamiltonian:

H(h3, h1) ≡H(h3) + 2h1S1(π). (14)

It is the purpose of this paper to study the evolution of
the gaps

ωa(qa, h3, h1) ∝ hεa(h3)
1 , (15)

by switching on the transverse staggered field. In partic-
ular we are interested in the h3-dependence of the expo-
nents εa(h3).

It has been pointed out by the authors of reference [13]
that a staggered field alone, i.e. h3 = 0,M = 0, generates
a ground state gap which opens with hε1, ε = 2/3. In
a previous paper we have studied the finite-size scaling
behaviour of the gap and of the staggered magnetization
in the scaling limit h1 → 0, N → ∞ and fixed scaling
variable x = Nhε1 at M = 0.

The method used in reference [9] is based on a closed
set of differential equations, which describes the h1-
evolution of the energy gap ω3(π, 0, h1) (Eq. (4)) and of
the relevant transition amplitude (11) for h3 = 0. It turns
out that the exponent ε(h3 = 0) in (15) is fixed by the
finite-size behaviour of the initial values, i.e. (4, 11) for
h3 = h1 = 0:

ε(h3 = 0) =
1

1 + κ(0)
=

2

3
· (16)

In this paper, we extend the method of reference [9] to the
case h3 > 0.

In Section 2 we discuss the evolution equations for the
Hamiltonian (14). The finite-size behaviour of the initial
conditions (h1 = 0, h3 > 0) for the gaps (4, 5) and for the
relevant transition matrix elements (10, 11) is reviewed as
well.

Switching on the transverse staggered field in (14) a
gap opens at the field independent (Eq. (5) for q = π) and
the field dependent (Eq. (4) for q = q3(M)) soft modes.
The finite-size scaling behaviour of these gaps is studied in
Sections 2.1 and 2.2, respectively. In Section 3, we investi-
gate the effect of a longitudinal periodic field on the low-
energy excitations of the AFH model. From these results
we infer in Section 3.1 the corresponding magnetization
curve.

2 Evolution equation and initial conditions

Starting from the eigenvalue equation of the Hamilto-
nian (14)

H(h3, h1)|Ψn(h3, h1)〉 = En(h3, h1)|Ψn(h3, h1)〉, (17)

it is straight forward to derive the following set of differ-
ential equations

d2En

dh2
1

= −2
∑
l6=n

|Tln|2

ωln
, (18)

dTnm

dh1
=−

∑
l6=m,n

[
TnlTlm

ωln
+
TnlTlm

ωlm

]
−
Tnm

ωnm

dωnm

dh1
,

(19)

which describes the evolution of the energy eigenvalues
En = En(h3, h1), energy differences ωnm = ωnm(h3, h1) =
En −Em and transition matrix elements

Tnm(h3, h1) ≡ 〈Ψn(h3, h1)|S1(π)|Ψm(h3, h1)〉, (20)

of the perturbation operator S1(π)1. The latter has the
following properties: it changes the momentum by ∆p = π
and the total spin S3

T by one unit. Therefore, the eigen-
states |Ψn(h3, h1)〉 are linear combinations

|Ψn(h3, h1)〉 =
∑
S3
T

[
an(S3

T , h1)|pn, S
3
T 〉

+bn(S3
T , h1)|pn+π, S3

T 〉
]
, (21)

of eigenstates |pn, S3
T 〉 and |pn+π, S3

T 〉 to the total spin
S3
T and the momenta pn, pn + π. Note, that the evolution

equations (18, 19) decouple for different momenta pn, pm
with |pn − pm| 6= π. In Sections 2.1 and 2.2 we will study
the following cases:

1. pn = 0, π,
2. pn = q3(M), q3(M) + π.

For both cases we have the initial conditions:

ωnm(q, h3, h1 = 0) =
anm(h3)

N
, (22)

Tnm(h3, h1 = 0) = bnm(h3)Nκ(h3), (23)

which are completely fixed by the excitation energies and
transition amplitudes of the unperturbed problem (h1 =
0) in a uniform field h3. We can now repeat the whole line
of arguments, we developed for h3 = 0 in reference [9]. The
evolution equations (18, 19) possess scaling solutions:

ωnm(q, h3, h1) = h
ε(h3)
1 Ωnm(x), (24)

Tnm(h3, h1) = Nh
σ(h3)
1 Θnm(x), (25)

in the combined limit

h1 → 0, N →∞, x ≡ Nhε(h3)
1 fixed. (26)

1 The N-dependence of eigenvalues and transition matrix el-
ements is always understood.
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Fig. 1. The exact critical exponents ε1 (solid line) and ε3
(dashed line) versus h3 andM , determined from a Bethe ansatz
solution of finite system size N = 4096.

The exponents ε(h3) and σ(h3) are given by the finite-size
behaviour of the initial values (22, 23):

ε(h3) =
1

1 + κ(h3)
, σ(h3) =

1− κ(h3)

1 + κ(h3)
· (27)

2.1 The gap at the field independent soft mode q = π

As was pointed out in the introduction, the ground state
|n = 0〉 = |ps, S〉 of the 1D spin-1/2 AFH model, H(h3, 0),
in the presence of a uniform field h3 has total spin S3

T =
S = NM(h3) and momentum ps = 0, or ps = π. The
first excited state which can be reached with the operator
S1(π):

|n = ±1〉 = |ps + π, S3
T = S ± 1〉, (28)

has a gap of the type (22)

ω±10(π, h3, 0) = E(ps + π, S ± 1)− E(ps, S)∓ h3, (29)

which vanishes as N−1 for N →∞. The transition matrix
elements:

T±10(h3, 0) ≡ 〈±1|S±(π)|0〉
N→∞
−→ Nκ1(h3) (30)

diverge in the limitN →∞, where κ1(h3) is obtained from
the known η1(M) exponent (12). Both curves, η1 = η1(M)
and M = M(h3) were determined exactly by means of
Bethe ansatz solutions on large systems [8], as well via a
solution of a system of nonlinear integral equation derived
from the Bethe ansatz [10]. The h3-dependence is shown
in Figure 1. It starts at the known value ε1(h3 = 0) = 2/3
and then drops monotonically with h3. At h3(M = 1/4) =
1.58 . . . , the exponent is reduced to

ε1(h3(1/4)) = 0.5975 . . . (31)

In order to explore the scaling behaviour (24) of the gap,

we have determined numerically the ratios:

ω10(π, h3, h1)

ω10(π, h3, 0)
= 1 + e10(x, h3),

= 1 + x
Ω10(x, h3)

a10
, (32)

with x = Nh
ε1(h3)
1 and Ω10 as given in reference [9], on

finite systems. The homogeneous field h3 has to be chosen
carefully. According to our premise, the ground state |0〉 =
|ps, S〉 (at h1 = 0) has total spin S3

T = S = NM(h3) and
energy E(ps, S)− 2h3S

z
T . The two excited states | ± 1〉 =

|ps+π, S3
T = S±1〉 have a gap. Positivity of the gaps yields

an upper and lower bound of the h3-field (hu3 ≥ h3 ≥ hl3):

2hu3 = E(ps+π, S+1)−E(ps, S), (33)

2hl3 = E(ps, S)−E(ps+π, S−1), (34)

which leads to the well-known steps in the magnetization
curve on finite systems [1]. Note, that at the edges hu3 and
hl3 the excitations energies:

ω+10(π, hu3 , h1 = 0) = 0, (35)

ω−10(π, hl3, h1 = 0) = 0, (36)

vanish identically. Therefore, ratios of the gap (32) do not
make sense in these cases. At the midpoint field h̄3, how-
ever:

2h̄3 ≡ (hu3 + hl3)/2

= [E(ps+π, S+1)−E(ps+π, S−1)]/2, (37)

the two excited states have the same gap:

ω±10(π, h̄3, 0) =

E(ps+π, S+1) +E(ps+π, S−1)− 2E(ps, S)

2
· (38)

The degeneracy of these two excited states is not lifted
in the first oder perturbation theory in h1, since all the
relevant matrix elements

〈n|S1(π)|m〉 = 0, n,m = ±1 (39)

vanish. The ratio (32) is shown in Figure 2a, for the mid-
point field h̄3 = h̄3(N) ≈ 1.58, corresponding to a mag-
netization M = 1/4 on system sizes N = 8, 12, 16, 20.
Optimal scaling is achieved here, with the exponent ε1 =
0.595(5), which is in excellent agreement with the exact
value (31). According to reference [9], the low x-behaviour
of the scaling function e10(x, h3) is also predicted by the
evolution equations (18, 19) in the scaling limit (26):

e10(x, h3) = e10(h3)xφ1(h3), (40)

with φ1(h3) = 2/ε1(h3). The linear behaviour in the vari-
able x2/ε1(h3) for small x-values is clearly seen in Figure 2a.

The effect of the homogeneous h3-field on the ex-
ponent ε1 is demonstrated in Figure 2a. An exponent
ε1(h3) = ε1(h3 = 0) = 2/3 independent of h3 would lead
to considerable scaling violations of the ratios (32), as is
demonstrated in Figure 2b.
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Fig. 2. A comparison of the ratio (32) for two different values
of ε1 and the midpoint field h̄3 (Eq. (37)) for system sizes
N = 8, 12, 16, 20.

2.2 The gap at the field dependent soft mode q = q3

Let us now turn to the field dependent soft mode (Eq. (4)
for q = q3(M)). Switching on the perturbation operator
h1S1(π) the ground state energy E(ps, S) and the energy
E(ps+q3(M), S) of the excited state evolve independently,
since their momentum difference q3(M) does not fit to the
momentum transfer π mediated by the operator S1(π). In
other words, we have to study the ground state energy
E0(h3, h1) in the sectors with momentum p = 0, π and
p = q3(M), q3(M) + π, separately. In both cases insertion
of the scaling ansatz (24, 25) for the excitation energies
ωn0 and transition amplitudes Tn0 into (18) yields:

d2E0

dh2
1

= −N1+2κ1(h3)x1−2κ1(h3)
∑
l6=0

|Θl0(x)|2

Ωl0(x)
, (41)

where x = Nh
ε1(h3)
1 . To integrate (41) we introduce

y ≡ x1/ε1(h3) = h1N
1+κ1(h3), (42)

and

f(y) ≡ x1−2κ1(h3)
∑
l6=0

|Θl0(x)|2

Ωl0(x)
, (43)

from which follows:

E0(h3, h1)−E0(h3, 0) =

−

(
h1

y

)ε1(h3) ∫ y

0

dy′
∫ y′

0

dy′′f(y′′). (44)

Here, we have used the fact that

dE0(h3, h1)

dh1

∣∣∣∣
h1=0

= 〈0|S1(π)|0〉|h1=0 = 0. (45)

Equation (44) describes the lowering of the ground state
energy, if we switch on the staggered field of strength
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h 3
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0(
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,0
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1ε 1
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ε1=0.595

Fig. 3. The scaling of the ground state energy (45) for the
midpoint field h̄3 (Eq. (44)) in the limit (26). Numerical data
were obtained on system sizes N = 8, 12, 16, 20.

h1. We observe the same scaling behaviour with hε11 ,
we found for the excitation energies ωn0(π, h3, h1). In

Figure 3 we have plotted [E0(h3, h1) − E0(h3, 0)]/h
ε1(h3)
1

versus the scaling variable x2/ε1−1 for the case p = 0, π.
We observe a linear behaviour in this variable, which is
a consequence of the small x-behaviour of the energy dif-
ferences Ωl0(x) and transition amplitudes Θl0(x) in equa-
tion (43) (see Ref. [9]):

Ωl0(x) ∼
al0

x
, Θl0(x) ∼ x−2+1/ε1 . (46)

Therefore, the integrand on the right-hand side of (44) is
constant and the small x-behaviour of (44) is governed by
y2−ε1 = x2/ε1−1.

Let us next turn to the lowering of the ground state
energy in the sector with p = q3(M), q3(M)+π. The expo-
nents κ±(h3) are defined by the initial conditions (h1 = 0)
for the transition matrix elements:

〈±1|S1(π)|0〉 = 〈ps±1+q3(M), S±1|S1(π)|ps+q3(M), S〉

= b±10(h3)Nκ±(h3). (47)

Conformal field theory relates the corresponding η-expo-
nents (κ± = 1− η±/2) to the scaled energy differences:

η±(M) =
Ω̂±(M)

πv(M)
, (48)

with

Ω̂±(M) = lim
N→∞

N
[
E(ps±1+q3(M), S±1)

−E(ps+q3(M), S)
]
. (49)

Here v(M) is the spin wave velocity (9) at the soft mode
q = 0. Evaluating (49, 9) leads to the following represen-
tation of the η±-exponents (48)

η±(M) = η1(M) +
v±(M)

v(M)
, (50)
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where

v±(M) =
1

2π
lim
N→∞

N
[
E(ps±1+q3(M±1/N)±2π/N, S±1)

−E(ps±1 + q3(M±1/N), S ± 1)
]
, (51)

are the right-hand- (+) and left-hand (−) spin wave ve-
locities obtained from the slopes of the dispersion curve
approaching the soft mode momentum from the right- and
from the left-hand side, respectively:

p 7→ ps + q3(M)± 2π/N. (52)

From conformal invariance arguments for the energy dif-
ferences in (51) we get

η+(M) = η−(M) = 1 + η1(M). (53)

In summary, we conclude that the gap of the field depen-
dent soft mode q3(M):

E(ps+q3(M), S)−E(ps, S) ∼ hε1(h3)
1 , (54)

is dominated by the lowering of ground state energy
E(ps, S) and therefore scales with the same exponent
ε1(h3) as the field independent one.

3 Opening of a gap
in a longitudinal periodic field

So far we have only considered the Hamiltonian (14) with
an inhomogeneous field h1S1(π) transverse to the homo-
geneous field h3S3(0). By means of the evolution equa-
tions (18, 19) we can also study the influence of a longi-
tudinal periodic field

H(h3, hq) ≡H0 − 2h3S3(0) + 2hqS̄3(q). (55)

The perturbation operator S̄3(q) ≡ [S3(q) + S3(−q)]/2
commutes with the total spin operator S3

T and changes
the ground state momentum ps by ±q. For this reason, all
momentum states with

pk = ps ± kq, k = 0,±1,±2, . . . (56)

are coupled via the evolution equation. For example for
q = π/2 there are 4 different momentum states with
pk/π = ±1/2, 0, 1, which have to be taken into account.
In general, the transition matrix elements at hq = 0:

T3(h3, hq = 0) = 〈ps ± q, S|S3(±q)|ps, S〉 (57)

turn out to be finite, except for the case, where we meet
a soft mode:

ω3(q, h3, hq = 0) = E(ps+q, S, hq = 0)−E(ps, S, hq = 0)

N→∞
−→

a3(h3)

N
· (58)
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Fig. 4. Finite-size scaling of the gap ratio (61), for N =
8, 12, 16, 20 and q3(M = 1/4) = π/2 with ε3 = 0.81 . . .

This happens if:

q = q3(M) = π(1− 2M), (59)

e.g. a soft mode appears at q = ±π/2 if M = 1/4. At
the soft mode (59) the transition matrix elements (57)
diverge:

T3(h3, 0)
N→∞
−→ b3(h3)Nκ3(h3) (60)

with an exponent κ3(h3) = 1 − η3(M(h3))/2, given by
the η3(M)-exponent, given in the introduction. From the
evolution equations with the initial conditions (58, 60), we
get in this case a finite-size scaling behaviour of the gap
ratio:

ω3(q3, h3, hq)

ω3(q3, h3, 0)
= 1 + e3(x, h3), (61)

with a scaling variable x = Nh
ε3(h3)
q , where ε3(h3) =

1/[1 + κ3(h3)]. The curve ε3(h3) is shown in Figure 1.
Note that η3(M) = 1/η1(M), which means ε3(0) = 2/3,
e.g. for M = 1/4, we have

ε3(h3(M = 1/4)) = 0.81011 . . . (62)

A test of the finite-size scaling behaviour (61) for q = π/2
and M = 1/4 with the exponent (62) is shown in Figure 4.
The small x-behaviour of the gap ratio is properly repro-
duced with x2/ε3 and compared with the prediction hε3q ,
where ε3 = ε3(h3(M = 1/4)) is given by (62).

3.1 The magnetization curve in a periodic field

Let us finally discuss the influence of the periodic pertur-
bation in (55) on the magnetization curve M = M(h3).
First of all one should notice that the opening of a gap
for hq > 0 in the energy differences (58) does not imply a
priori a plateau in the magnetization curve. The criterium
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Fig. 5. The evolution of a plateau in the magnetization curve
at M = 1/4, induced by an external field (55) with period q =
π/2. The magnetization curve is calculated from finite system
(N = 20) via midpoint magnetization [1] in conjunction with a
finite-size extrapolation of the plateau width from system sizes
of N = 8, 12, 16, 20.

of a plateau with an upper and lower critical field hu3 , h
l
3

can be read from (33, 34):

2(hu3 − h
l
3) = lim

N→∞

[
E(ps+π, S+1, hq)

−2E(ps, S, hq)E(ps+π, S−1, hq)
]
. (63)

The emergence of the plateaus in the magnetization curve
can be seen in Figure 5. A finite-size analysis shows that
a non vanishing difference (63) remains in the thermo-
dynamical limit. For this analysis we have used the BST-
Algorithm [14,7]. The hq-dependence of the plateau width
is plotted in Figure 6, together with the predicted scaling
behaviour hε1q for q = π/2.

4 Conclusions

This paper is aimed to study the effect of a small periodic
field on the eigenvalue spectrum of the 1D spin-1/2 AFH
model. We are interested in particular in the opening of a
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Fig. 6. The evolution of the difference (63) between the upper
and lower critical field at the plateau M = 1/4. The solid line
shows a fit to the data for small values of the external periodic
field hq . The expected behaviour is ∝ hε3q , with ε3 = 0.8101
given by equation (62). The dashed line represents a linear fit
for larger values of hq .

gap in those situations, where the unperturbed model is
known to be critical. The critical exponents η1(M), η3(M),
which govern the divergence in the transition matrix el-
ements (10, 11) of the unperturbed model, are known.
Following conformal field theory, they are related to the
finite-size behaviour (6) of certain energy differences (4, 5),
which can be computed on very large systems by means
of Bethe ansatz.

The evolution of the eigenvalue spectrum under the
influence of perturbation of strength hq is described by a
system of differential equations (18, 19), which has been
shown to have scaling solutions (24, 25) in the scaling
limit (26). The exponents ε and σ in the scaling solu-
tions are uniquely determined by the corresponding η-
exponents in the unperturbed model. We have studied in
detail the following types of perturbations.

1. A transverse staggered field together with a homoge-
neous longitudinal field h1S1(π) + h3S3(0). Both en-
ergy differences (4, 5) at the soft mode momenta (7)
were shown to evolve a gap with an exponent

εa(h3) =
2

4− ηa(M(h3))
, (64)

with a = 1 depending on the external homogeneous
field h3 with magnetization M(h3).

2. A longitudinal homogeneous and periodic field
2h3S3(0) + 2hqS̄3(q). Such a perturbation creates a
plateau in the magnetization curve M = M(h3) at

M =
1

2

(
1−

q

π

)
. (65)

In other words q has to meet the soft mode momen-
tum q = q3(M) = π(1 − 2M). The difference of the
upper and lower critical field, which defines the width
of the plateau, evolves with an exponent ε3(h3), which
is related to the corresponding η3-exponent via (64)
for a = 3.
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